Membrane-attached protein protects bacteria and chloroplasts from stress

Protective shield: Membrane-attached protein protects bacteria & chloroplasts from stress
Multiple IM30 proteins form large, oligomeric ring structures. IM30 rings bind to stressed membrane surfaces, disassemble, and individual proteins partially unfold. Multiple IM30 proteins form a protective carpet structure on the membrane surface. Credit: Dirk Schneider and Benedikt Junglas, JGU

Bacteria and plant cells have adapted to cope with stress. They express specific stress proteins, but how this line of defense works is still unclear. A group of scientists headed by Professor Dirk Schneider of Johannes Gutenberg University Mainz (JGU) has now discovered a protective mechanism in cyanobacteria as well as in chloroplasts of plant cells: Complex ring structures formed by a protein attach to cell membranes and dissociate. Thereafter, the individual proteins spread out on the membrane surface and form a carpet structure. “Via formation of such a shield, bacteria and chloroplasts protect their membranes under certain stress conditions,” says Professor Dirk Schneider, head of the Membrane Biochemistry section

Read More