Researchers develop new molecular ferroelectric metamaterials

Researchers develop new molecular ferroelectric metamaterials
3-D-printed molecular ferroelectric metamaterial made of imidazolium perchlorate. Credit: University at Buffalo

A University at Buffalo-led research team has reported a new 3-D-printed molecular ferroelectric metamaterial.

The advancement, published Monday in the Proceedings of the National Academy of Sciences, is a step toward making these extraordinary lab-created materials more affordable and adaptable to countless multifunctional technologies. It could benefit everything from acoustic blankets for aircraft soundproofing to shock absorbers and elastic cloaks that shield sensitive electronic systems from external mechanical disturbances.

“The sky is the limit when it comes to ferroelectric metamaterials,” says the study’s lead author, Shenqiang Ren, Ph.D., professor in the Department of Mechanical and Aerospace Engineering at the UB School of Engineering and Applied Sciences.

Among the research interests of Ren, who holds appointments in UB’s Department of Chemistry and the university’s RENEW Institute, is the design and assembly of high-temperature molecular ferroelectrics. For the study,

Read More